Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cells ; 10(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831046

RESUMO

T cells are an essential part of the immune system. They determine the specificity of the immune response to foreign substances and, thus, help to protect the body from infections and cancer. Recently, T cells have gained much attention as promising tools in adoptive T cell transfer for cancer treatment. However, it is crucial not only for medical purposes but also for research to obtain T cells in large quantities, of high purity and functionality. To fulfill these criteria, efficient and robust isolation methods are needed. We used three different isolation methods to separate CD3-specific T cells from leukocyte concentrates (buffy coats) and Ficoll purified PBMCs. To catch the target cells, the Traceless Affinity Cell Selection (TACS®) method, based on immune affinity chromatography, uses CD-specific low affinity Fab-fragments; while the classical Magnetic Activated Cell Sorting (MACS®) method relies on magnetic beads coated with specific high affinity monoclonal antibodies. The REAlease® system also works with magnetic beads but, in contrast to MACS®, low-affinity antibody fragments are used. The target cells separated by TACS® and REAlease® are "label-free", while cells isolated by MACS® still carry the cell specific label. The time required to isolate T cells from buffy coat by TACS® and MACS® amounted to 90 min and 50 min, respectively, while it took 150 min to isolate T cells from PBMCs by TACS® and 110 min by REAlease®. All methods used are well suited to obtain T cells in large quantities of high viability (>92%) and purity (>98%). Only the median CD4:CD8 ratio of approximately 6.8 after REAlease® separation differed greatly from the physiological conditions. MACS® separation was found to induce proliferation and cytokine secretion. However, independent of the isolation methods used, stimulation of T cells by anti CD3/CD28 resulted in similar rates of proliferation and cytokine production, verifying the functional activity of the isolated cells.


Assuntos
Complexo CD3/metabolismo , Separação Celular/métodos , Coloração e Rotulagem , Linfócitos T/citologia , Contagem de Células , Proliferação de Células , Forma Celular , Sobrevivência Celular , Citocinas/biossíntese , Eritrócitos/citologia , Humanos
3.
Front Immunol ; 12: 772595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975859

RESUMO

Macrophages (MΦ) are known to exhibit distinct responses to viral and bacterial infection, but how they react when exposed to the pathogens in succession is less well understood. Accordingly, we determined the effect of a rubella virus (RV)-induced infection followed by an LPS-induced challenge on cytokine production, signal transduction and metabolic pathways in human GM (M1-like)- and M (M2-like)-MΦ. We found that infection of both subsets with RV resulted in a low TNF-α and a high interferon (IFN, type I and type III) release whereby M-MΦ produced far more IFNs than GM-MΦ. Thus, TNF-α production in contrast to IFN production is not a dominant feature of RV infection in these cells. Upon addition of LPS to RV-infected MΦ compared to the addition of LPS to the uninfected cells the TNF-α response only slightly increased, whereas the IFN-response of both subtypes was greatly enhanced. The subset specific cytokine expression pattern remained unchanged under these assay conditions. The priming effect of RV was also observed when replacing RV by IFN-ß one putative priming stimulus induced by RV. Small amounts of IFN-ß were sufficient for phosphorylation of Stat1 and to induce IFN-production in response to LPS. Analysis of signal transduction pathways activated by successive exposure of MΦ to RV and LPS revealed an increased phosphorylation of NFκB (M-MΦ), but different to uninfected MΦ a reduced phosphorylation of ERK1/2 (both subtypes). Furthermore, metabolic pathways were affected; the LPS-induced increase in glycolysis was dampened in both subtypes after RV infection. In conclusion, we show that RV infection and exogenously added IFN-ß can prime MΦ to produce high amounts of IFNs in response to LPS and that changes in glycolysis and signal transduction are associated with the priming effect. These findings will help to understand to what extent MΦ defense to viral infection is modulated by a following exposure to a bacterial infection.


Assuntos
Citocinas/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Vírus da Rubéola , Citocinas/genética , Glicólise , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Rubéola (Sarampo Alemão)/imunologia
4.
Innate Immun ; 25(5): 280-293, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31053044

RESUMO

Over the past few years the NAD-related compounds nicotinamide (NAM), nicotinamide riboside (NR) and 1-methylnicotinamide (MNA) have been established as important molecules in signalling pathways that contribute to metabolic functions of many cells, including those of the immune system. Among immune cells, monocytes/macrophages, which are the major players of inflammatory processes, are especially susceptible to the anti-inflammatory action of NAM. Here we asked whether NAM and the two other compounds have the potential to regulate differentiation and LPS-induced biological answers of the monocytic cell line THP-1. We show that treatment of THP-1 cells with NAM, NR and MNA resulted in growth retardation accompanied by enrichment of cells in the G0/G1-phase independent of p21 and p53. NAM and NR caused an increase in intracellular NAD concentrations and SIRT1 and PARP1 mRNA expression was found to be enhanced. The compounds failed to up-regulate the expression of the cell surface differentiation markers CD38, CD11b and CD14. They modulated the reactive oxygen species production and primed the cells to respond less effectively to the LPS induced TNF-α production. Our data show that the NAD metabolites interfere with early events associated with differentiation of THP-1 cells along the monocytic path and that they affect LPS-induced biological responses of the cell line.


Assuntos
Monócitos/imunologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Antígenos de Diferenciação/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Compostos de Piridínio , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
5.
J Innate Immun ; 11(4): 359-374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30654377

RESUMO

In response to GM-CSF or M-CSF, macrophages (MΦ) can acquire pro- or anti-inflammatory properties, respectively. Given the importance of CD14 and Toll-like receptor (TLR) 4 in lipopolysaccharide (LPS)-induced signaling, we studied the effect of anti-CD14 antibody mediated CD14 blockade on LPS-induced cytokine production, signal transduction and on the expression levels of CD14 and TLR4 in GM-MΦ and M-MΦ. We found M-MΦ to express higher levels of both surface antigens and to produce more interferon (IFN)-ß and interleukin-10, but less tumor necrosis factor (TNF)-α than GM-MΦ. Blockage of CD14 at high LPS concentrations increased the production of proinflammatory cytokines and decreased that of IFN-ß in M-MΦ but not in GM-MΦ. We show that phosphorylation states of signaling molecules of the MyD88 (myeloid differentiation primary response 88), TRIF (TIR-domain-containing adapter-inducing IFN-ß) and MAPK (mitogen-activated protein kinase) pathways are not altered in any way that would account for the cytokine overshoot reaction. However, CD14 blockage in M-MΦ decreased TLR4 and CD14 expression levels, regardless of the presence of LPS, indicating that the loss of the surface molecules prevented LPS from initiating TRIF signaling. As TNF-α synthesis was even upregulated under these experimental conditions, we suggest that TRIF is normally involved in restricting LPS-induced TNF-α overproduction. Thus, surface CD14 plays a decisive role in the biological response by determining LPS-induced signaling.


Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Anticorpos Monoclonais/metabolismo , Células Cultivadas , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/imunologia , Lipoproteínas/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Cytometry A ; 95(2): 234-241, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30378734

RESUMO

Separation of specific blood cells is necessary for a deeper insight into their role in health and disease. To obtain such cells, efficient and robust isolation methods are needed. We compare here the Fab-based Traceless Affinity Cell Selection (TACS®) technology and the Magnetic Activated Cell Sorting (MACS®) technology to isolate human monocytes from whole blood and buffy coats as well as the differentiation of the isolated monocytes to dendritic cells (DCs). TACS® is a positive selection technology using immune affinity chromatography based on CD-specific low affinity Fab-fragments for the reversible capture and release of target cells. The positive selection by MACS® is based on magnetic beads coated with specific high affinity monoclonal antibodies to catch the target cells. The target cells separated by TACS® are "label-free" while cells positively isolated by MACS® will carry the cell specific label. Our data show that the separation methods described here are well suited to obtain functional monocytes of high quality and purity. A differentiation of the cells into DCs leads to comparable results with the exception that CD1a expression levels on immature and mature DCs are elevated when monocytes are isolated using the TACS® technology. Taken together, our results suggest that the TACS® method may be of advantage when preparing monocytes and monocyte-derived DCs for functional analyses, while the MACS® method seems to be capable of higher monocyte recoveries. © 2018 International Society for Advancement of Cytometry.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Separação Imunomagnética/métodos , Monócitos/citologia , Antígenos CD/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Monócitos/metabolismo
7.
Mol Immunol ; 93: 206-215, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29207327

RESUMO

In response to environmental stimuli such as granulocyte-macrophage or macrophage colony stimulating factor (GM-CSF/M-CSF), macrophages (MΦ) can acquire distinct functional phenotypes that control inflammatory processes on the one hand and contribute to a broad spectrum of pathologies on the other. Potential intervention strategies will require an understanding of the signalling processes that are associated with macrophage polarization. In the present study, we show that M-MΦ produce more IFN-ß and IL-10 and a lot less TNF-α than do GM-MΦ in response to LPS. To define the molecular mechanisms that underlie the biosynthesis of TNF-α we carried out a detailed investigation of the LPS-induced activation of the canonical and non-canonical myeloid differentiation primary response 88 (MyD88)-dependent signal transduction pathways as well as the TIR-domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathway. Our results show that all three pathways are activated in both cell types and that the activation is more pronounced in M-MΦ. While IL-10 was found to interfere with TNF-α production in M-MΦ, we exclude a decisive role for IFN-ß in this respect. Furthermore, we demonstrate that TNF-α mRNA is markedly destabilized in M-MΦ and that expression of the mRNA destabilizing protein tristetraprolin is greatly enhanced in these cells. Collectively, our study suggests that differential effects of LPS on TNF-α mRNA turnover and on signal transduction pathways influence the amount of TNF-α finally produced by GM-MΦ and M-MΦ.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interferon beta/farmacologia , Interleucina-10/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tristetraprolina/metabolismo , Fator de Necrose Tumoral alfa/genética
9.
Innate Immun ; 21(8): 813-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385774

RESUMO

The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Monócitos , Niacinamida , Complexo Vitamínico B , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Eicosanoides/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , NAD , NF-kappa B/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Transdução de Sinais/efeitos dos fármacos , Complexo Vitamínico B/metabolismo , Complexo Vitamínico B/farmacologia
10.
Innate Immun ; 17(2): 212-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20388721

RESUMO

Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.


Assuntos
Comunicação Celular , Imunomodulação , NAD/imunologia , ADP Ribose Transferases/imunologia , Animais , Metabolismo Energético/imunologia , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo
11.
Cell Calcium ; 46(4): 263-72, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19748117

RESUMO

Extracellular nicotinamide adenine dinucleotide (NAD(+)) is known to increase the intracellular calcium concentration [Ca(2+)](i) in different cell types and by various mechanisms. Here we show that NAD(+) triggers a transient rise in [Ca(2+)](i) in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca(2+) from IP(3)-responsive intracellular stores and an influx of extracellular Ca(2+). By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD(+)-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD(+). The identification of P2Y(1) and P2Y(11) as receptor subtypes responsible for the NAD(+)-triggered increase in [Ca(2+)](i) was supported by several lines of evidence. First, specific P2Y(1) and P2Y(11) receptor antagonists inhibited the NAD(+)-induced increase in [Ca(2+)](i). Second, NAD(+) was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD(+) caused an increase in [cAMP](i), prevented by the P2Y(11) receptor-specific antagonist NF157.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Monócitos/metabolismo , NAD/metabolismo , Receptores Purinérgicos P2/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Linhagem Celular Transformada , Clonagem Molecular , AMP Cíclico/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , NAD/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1
12.
Purinergic Signal ; 5(3): 309-19, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19221895

RESUMO

In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD(+)) induces a transient rise in [Ca(2+)](i) in human monocytes caused by an influx of extracellular calcium. The NAD(+)-induced Ca(2+) response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X(1), P2X(4), and P2X(7) receptors being engaged in the NAD(+)-induced rise in [Ca(2+)](i). Among the P2X receptor subtypes, the P2X(7) receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X(7) receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD(+), we found that NAD(+) unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 muM ATP was sufficient to activate the nonselective pore, NAD(+) at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD(+) and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...